

TSMC OIP 2019

Silicon Accurate Analog Mixed Signal Verification of Mixel's Dual Mode C-PHY/D-PHY IP for AR/VR Display ICs with Mentor AFS

Mixel Overview

- VR AR MR Industry trends
- XR Display System
- Mixel C-PHY/D-PHY IP
- Design & Verification Challenges
- Analog FastSPICE (AFS) Platform
- Simulation and Silicon Results
- Summary

Mixel Overview

- Leading provider of mixed-signal IP since 1998
- Industry leader in MIPI[®] interfaces and contributing member of the MIPI Alliance since 2006
- First IP provider to demonstrate silicon-proven D-PHYSM, C-PHYSM, and M-PHY[®]
- Customer-centric focus:
 - We customize our IPs to help differentiate our customers' products
 - Our methodology has been optimized to achieve first-time silicon success, no exception
 - We consistently go the extra-mile for our customers

Mixel IP Portfolio

- Mixed-signal IP provider with emphasis on PHY
 - MIPI PHY: D-PHY, C-PHY, M-PHY
 - LVDS SerDes
 - Multi-standard SerDes: C/D-PHY, LVDS/D-PHY
- Complete integrated solution includes PHY, controller, and platform
- Widest support of optimized PHY configurations using patented topologies
- Support ALL MIPI HS PHYs
- Widest coverage of process nodes and foundries: silicon-proven in 9 different nodes and 8 different foundries

Mixel MIPI PHY Customers

And many others that cannot be disclosed at this time.....

- Mixel Overview
- VR AR MR Industry trends
- XR Display System
- Mixel C-PHYSM/D-PHYSM IP
- Design & Verification Challenges
- Analog FastSPICE (AFS) Platform
- Simulation and Silicon Results
- Summary

What is XR

- Virtual Reality (VR)
 Fully artificial environment
- Augmented Reality (AR)
 - Virtual objects overlaid on real-world environment

Source: Pinterest, AR VR application pin

 Mixed Reality (MR)
 — Virtual environment combined with real world

VR AR MR Industry trends

 Computer vision allows computers to understand what they are "seeing" through cameras resulting in smart applications and use cases

VR and AR is increasingly used in training and teaching

- Virtual environments allow students to practice anything from construction to flight to surgery without the risks associated with real-world training
- Example: HoloLens technology is used in military training

Source: Pinterest, AR VR application pin

Mentor A Siemens Busin

VR AR Industry trends

Consumer Entertainment VR hits the mainstream

 More realistic and accurate simulations of our real world resulting in more immersive entertainment experiences

VR and AR environments becoming increasingly collaborative and social

 Virtual "conference calls" where participants can see and interact with each other, or socializing and relaxing with friends is soon becoming a reality

AR increasingly finding its way into vehicles

 Powered by AI in-vehicle AR has the potential to improve safety and increase comfort and driver convenience

Source: Pinterest, AR VR application pin

- Mixel Overview
- VR AR MR Industry trends
- XR Display System
- Mixel C-PHY/D-PHY IP
- Design & Verification Challenges
- Analog FastSPICE (AFS) Platform
- Simulation and Silicon Results
- Summary

XR Display System

Video over DP or USB-C connector from PC or smartphone

XR Displays Drive Video Interface Technology

- Higher PPI eliminates "screen door" effect & enables ability to read text
 - Resolution: 2Kx2K minimum, better = 3Kx3K, ideal = 4Kx4K
- AMOLED, LCOS, and OLEDoS: Leading Near-Eye Screen Technologies
 - The response time of AMOLED is lower than that of liquid crystal by an order of magnitude, avoiding streaking and blurring due to VR interaction
- VR systems require higher video bandwidths to match display resolutions
 - Need 32Gbps raw bandwidth GPU to display
 - Need DP DSC support to exceed dual 5.5M pixel displays and MIPI DSC support to exceed 6.2M pixel displays
 - Need SPR support for optimized OLED bandwidth

- Mixel Overview
- VR AR MR Industry trends
- XR Display System
- Mixel C-PHY/D-PHY IP
- Design & Verification Challenges
- Analog FastSPICE (AFS) Platform
- Simulation and Silicon Results
- Summary

Mixel C-PHY/D-PHY IP integrated in DDIC

• Combo PHY can be configured as either a C-PHY or D-PHY

- Configurable for transmit (TX) and receive (RX), additional optimized configurations for TX and RX provide smaller area and higher performance
- Supports lane swapping and pin swapping features

MIPI D-PHY mode supports

- MIPI Master or Slave
- Display interface DSI v1.3 and Camera interface CSI-2 v1.2
- 2.5 Gbps data rate per lane with De-skew calibration
- BIST with 100% coverage for HM
- 4 lanes in D-PHY (10 pins)

MIPI C-PHY mode supports

- Display interface DSI-C v1.0 and Camera interface CSI-2 v1.3
- 80 Msps to 2.5 Gsps symbol rate per lane in high speed mode
- T1 and T2 modes
- BIST with 100% coverage for HM
- 3 lanes in C-PHY (9 pins)

Why dual-mode C-PHY/D-PHY interface is required mixed signal Excellence

Minimal Overhead

- Sharing of the serial interface pins
- All D-PHY blocks are re-used for C-PHY

Enhanced PPA

- Flexibility to support both
 PHY
 - ✓ C-PHY @ 2.5 Gsps (≈5.7 Gbps)
 ✓ D-PHY @ 2.5 Gbps

- Mixel Overview
- VR AR MR Industry trends
- XR Display System
- Mixel C-PHYSM/D-PHYSM IP
- Design & Verification Challenges
- Analog FastSPICE (AFS) Platform
- Simulation and Silicon Results
- Summary

XR System Challenges

- High Bandwidth Requirements
 - High display resolution
 - Faster frame rate
 - Higher sensor resolution
 - High dynamic range
- SOC Design Constraints
 - Low Power / Heat
 - Package / Minimal pin count
 - Minimize die area Support multiple use cases

Source : Qualcomm Extended Reality

Custom IP Verification Challenges

- Traditional SPICE simulators do not have performance and capacity
- Need nanometer SPICE accuracy to validate key specifications
- Need tighter tolerances to increase the dynamic range (>100dB)
- Need to include layout parasitics and device noise
- Long runs for verification and characterization

MIPI D-PHY/C-PHY TX		Specification
Critical Specs/ Design Targets	Data Rate per lane	2.5Gbps for D-PHY mode
		5.7Gbps for C-PHY mode
	Power efficiency Target	<3-4mW/Gbps
	TX Jitter	0.3 UI
	CLK to Data skew	0.2 UI
	HS TX diff swing	140-270mV
	HS TX common mode voltage	150-250mV

SoC Verification Challenges in nm Technologies

A Siemens Business

Challenges to Matching Silicon

Simulated Circuit

<u>Simulation</u>

- Model accuracy (SPICE, Variation, Corners, S-Parameters)
- Process variation (global & local)
- Circuit simulator accuracy (noisefloor)
- Layout and Thermal effects
- Distribution uncertainty due to sample size
- Parastics (extraction, variation)
- Aging effects
- Device noise, noise bandwidth, runtime
- Measurement post-processing
- System level modeling

Measured Silicon

<u>Silicon</u>

- Specific silicon manufacturing
- Lot, wafer, die selection
- Specific contextual circuit activity
- Test equipment, method, resolution...
- Probe effects & variability
- Temperature & variation
- Voltage & variation
- Distribution uncertainty due to sample size
- Measurements
- Measurement post-processing
- Compliance testing

- Mixel Overview
- VR AR MR Industry trends
- XR Display System
- Mixel C-PHY/D-PHY IP
- Design & Verification Challenges
- Analog FastSPICE (AFS) Platform
- Simulation and Silicon Results
- Summary

Analog FastSPICE (AFS) – nm Circuit Verification

Me

A Siemens Busines

The Problem- Simulation Accuracy, Performance & Capacity	AFS Industry-Proven Leadership	The Value- Faster TTM and Lower Risk
 Accuracy vs Silicon Complex models for FinFET Need advanced analyses Need to include additional effects Device noise Layout parasitics Circuit verification bottleneck Longer simulation times Need many more simulations Device Noise vs Process Node/Supply Voltage 130nm device device device device 	 Industry leader for nanometer circuit verification >175 customers worldwide Foundry certified by the world's leading foundries Drop-in compatibility in existing flows 	 Foundry certified down to 5nm >2x faster vs parallel SPICE simulators >20M-element capacity Signoff Accuracy for nm designs Must have for PLL, ADC/DAC, High-Speed I/O Proven to be within 1–2 dB of silicon Silicon accurate SerDes Verification

AFS and PLL Verification Challenges

Performance

- 2x-6x faster transient simulations*
- 4x-5x faster transient noise simulations* (jitter, phase noise)
- Near Linear Scaling Monte Carlo (using MCP/DMCP)
- Near Linear Scaling Corners (using MCP/DMCP)
- 5x-10x faster PNOISE for switched cap circuits*

Accuracy

- Foundry certified down to 5nm (including aging)
- Silicon accurate Jitter and Phase Noise (1-2 dB)
- Nm SPICE accuracy for higher data rates
- Nm SPICE accurate power measurements
- Accurate S-parameter analysis
- Capacity
 - > 20 M element capacity for AC/DC/Transient
 - > 1 M element capacity for PSS/PNOISE

* versus parallel SPICE simulators

TSMC Custom Design Reference Flow

AFS Platform Full-Spectrum Device Noise Analysis

- · Solution: Use device noise analysis to characterize performance of analog, mixed-signal, and RF circuits
- Technology: AFS Platform Full-Spectrum Device Noise Analysis for transient noise and periodic noise
- Benefit: Verify PLLs, ADCs, SerDes, and other circuits with nm SPICE accuracy including all device noise effects

- Mixel Overview
- VR AR MR Industry trends
- XR Display System
- Mixel C-PHY/D-PHY IP
- Design & Verification Challenges
- Analog FastSPICE (AFS) Platform
- Simulation and Silicon Results
- Summary

Silicon Measurement/Simulation Correlations for D-PHY mode

The eye diagram is courtesy of Synaptics

From AFS Simulation

	Silicon Measurement	AFS Simulation
Eye Height	293mV	285mV
Eye Width	377ps	380ps

AFS Simulation Results Correlation with Silicon Measurements is within **0.8% - 2%**

Mentor AFS is certified for latest TSMC 5nm FinFET process

Mixel MIPI C-PHYSM Eye Diagram at 2.5Gsps

The eye diagram is courtesy of Synaptics

PLL Simulation Results

- Mixel Overview
- VR AR MR Industry trends
- XR Display System
- Mixel C-PHY/D-PHY IP
- Design & Verification Challenges
- Analog FastSPICE (AFS) Platform
- Simulation and Silicon Results

Summary

Summary

- Growing applications of Virtual and Augmented reality devices demands high bandwidth, high resolution and low power specifications for VR/AR ICs
- Mixel is industry leader in MIPI interface PHYs and demonstrated silicon-proven D-PHYSM, C-PHYSM, and M-PHY[®] with TSMC
- Mentor's AFS is essential for Mixel's Dual Mode C-PHY/D-PHY IP Design & Verification

✓ Rapid and accurate block-level and top-level analysis
 ✓ Good simulation-to-silicon correlation within 0.8% - 2%

TSMC Models predict measured behavior with good confidence